A new Hebrew University study recently examined the possibility that octopuses, known to be among the most intelligent of invertebrates, could have multiple brains.

The full intelligence of an octopus is not fully understood, however it is known that they have the largest nervous system among invertebrates – even larger than some vertebrates – with more nerve cells not in the brain itself but rather in its body and the tentacles.
The question of multiple brains is one that many researchers are still investigating.  The collection of sensory information and the ability to process it, learn from it and respond accordingly, is an essential aspect of animal behavior. Octopuses, which are considered the most intelligent of the invertebrates even though the exact nature of their intelligence is still unclear, provide us with a unique system for studying the relationship between sensory information, neural processing and motor activity.
Evidence has been presented in the past that each of the octopus’s tentacles sometimes functions independently without exchanging information between themselves and the central brain system. There have been other documented cases of only one factor in the body correlating the activity in the tentacles. In any case, in each of the tentacles there are hundreds of suckers, each of which independently has thousands of sensory cells responsible for taste and touch, which can be likened to tentacles with hundreds of tongues.
In the brain of humans and vertebrates there exists an area for each body part, and the greater the amount of sensory cells in a particular organ (such as the tongue or finger), the larger the area of the brain that represents it. Body mapping such as this has not yet been found in the brain of an octopus.
MANY STUDIES in recent years, led by Hebrew University Prof. Benny Hochner, support the idea that during evolution, octopuses have adapted to the “strange structure of their bodies and the unique organization of their nervous system to allow themselves to function efficiently in the absence of the body mapping in the central nervous system.

Read the entire source article at Jpost